Epitaxial graphene surface preparation for atomic layer deposition of Al2O3
نویسندگان
چکیده
Atomic layer deposition was employed to deposit relatively thick ( 30 nm) aluminum oxide (Al2O3) using trimethylaluminum and triply-distilled H2O precursors onto epitaxial graphene grown on the Si-face of silicon carbide. Ex situ surface conditioning by a simple wet chemistry treatment was used to render the otherwise chemically inert graphene surface more amenable to dielectric deposition. The obtained films show excellent morphology and uniformity over large ( 64 mm) areas (i.e., the entire sample area), as determined by atomic force microscopy and scanning electron microscopy. X-ray photoelectron spectroscopy revealed a nearly stoichiometric film with reduced impurity content. Moreover, from capacitance-voltage measurements a dielectric constant of 7.6 was extracted and a positive Dirac voltage shift of 1.0 V was observed. The graphene mobility, as determined by van der Pauw Hall measurements, was not affected by the sequence of surface pretreatment and dielectric deposition. VC 2011 American Institute of Physics. [doi:10.1063/1.3596761]
منابع مشابه
Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane
Top-gated epitaxial graphene nanoribbon (EGNR) field effect transistors (FETs) were fabricated on epitaxial graphene substrates which demonstrated the opening of a substantial bandgap. Hydrogen silsesquioxane (HSQ) was used for the patterning of 10 nm size linewidth as well as a seed layer for atomic layer deposition (ALD) of a high-k dielectric aluminum oxide (Al2O3). It is found that the reso...
متن کاملGraphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.
Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and...
متن کاملUniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization
A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 ...
متن کاملAtomic-layer-deposited nanostructures for graphene-based nanoelectronics
Graphene is a hexagonally bonded sheet of carbon atoms that exhibits superior transport properties with a velocity of 108 cm /s and a room-temperature mobility of 15 000 cm2 /V s. How to grow gate dielectrics on graphene with low defect states is a challenge for graphene-based nanoelectronics. Here, we present the growth behavior of Al2O3 and HfO2 films on highly ordered pyrolytic graphite HOPG...
متن کاملAtomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene
Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique....
متن کامل